organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

5,7-Dihydroxy-3,6-dimethoxy-2-(4methoxyphenyl)-4*H*-chromen-4-one monohydrate

Akhtar Mohammad,^a Itrat Anis,^b Vickie McKee,^c Josef W. A. Frese^c and Muhammad Raza Shah^a*

^aH.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan, ^bDepartment of Chemistry, University of Karachi, Karachi 75270, Pakistan, and ^cDepartment of Chemistry, Loughborough University, Leicestershire LE11 3TU, England Correspondence e-mail: raza_shahm@yahoo.com

Received 30 August 2010; accepted 29 September 2010

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.003 Å; R factor = 0.050; wR factor = 0.142; data-to-parameter ratio = 14.0.

The title compound, $C_{18}H_{16}O_7 \cdot H_2O$, is a flavonoid isolated from *Dodonaea viscosa*. The benzopyran ring system of the flavonoid is essentially planar [maximum deviation = 0.025 (2) Å] and inclined at 5.83 (2)° to the attached benzene ring. The water of hydration is involved in extensive hydrogen bonding, assembling the molecules into a supramolecular network *via* classical intermolecular O–H···O hydrogen bonding. The crystal structure is further stabilized by π - π stacking interactions [centroid–centroid distance between benzene rings = 3.564 (3) Å].

Related literature

For the anti-oxidant activity of flavonoids, see: Pedrielli *et al.* (2001, for their anti-protozoal activity, see: Calzada *et al.* (1999) and for their anti-viral activity, see: Lin *et al.* (1999). For hydrogen-bond motifs, see: Etter *et al.* (1990). For related structures, see: Arfan *et al.* (2010); Azhar ul *et al.* (2004); Ferheen *et al.* (2005); Hussain *et al.* (2008, 2009); Jan *et al.* (2009); Khan *et al.* (2005*a,b*); Nisar *et al.* (2010); Riaz *et al.* (2002); Sharif *et al.* (2005).

Experimental

Crystal data

 $C_{18}H_{16}O_7 \cdot H_2O$ $M_r = 362.32$ Monoclinic, C2/c a = 19.869 (4) Å b = 6.8126 (15) Å c = 24.424 (5) Å $\beta = 91.298$ (4)°

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2008a) T_{min} = 0.978, T_{max} = 0.990

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.050$	
$wR(F^2) = 0.142$	
S = 1.05	
3400 reflections	
243 parameters	
3 restraints	

Z = 8Mo K α radiation $\mu = 0.12 \text{ mm}^{-1}$ T = 150 K $0.19 \times 0.18 \times 0.09 \text{ mm}$

 $V = 3305.2 (12) \text{ Å}^3$

14127 measured reflections 3400 independent reflections 2072 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.068$

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max} = 0.28 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -0.28 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O2-H2A\cdots O1W^{i}$	0.84	1.92	2.712 (3)	157
$O2-H2A\cdots O3$	0.84	2.33	2.780 (3)	114
$O4-H4A\cdots O5$	0.84	1.85	2.589 (3)	146
$O1W - H1A \cdots O5$	0.85 (2)	2.05 (2)	2.886 (3)	165 (3)
$O1W - H1A \cdots O6$	0.85 (2)	2.71 (3)	3.288 (3)	126 (3)
$O1W-H1B\cdots O4^{ii}$	0.86 (2)	2.38 (2)	3.135 (3)	148 (3)

Symmetry codes: (i) $x - \frac{1}{2}, y - \frac{1}{2}, z$; (ii) $-x + \frac{3}{2}, -y + \frac{1}{2}, -z + 1$.

Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT*; program(s) used to solve structure: *SIR2004* (Burla *et al.*, 2005); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008*b*); molecular graphics: *SHELXTL* (Sheldrick, 2008*b*); software used to prepare material for publication: *SHELXTL*.

The authors thank the Pakistan Science Foundation for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2231).

References

- Arfan, M., Ali, M., Anis, I., Ahmad, H., Choudhary, M. I., Khan, A. & Shah, M. R. (2010). J. Enzyme Inhib. Med. Chem. 25, 296–299.
- Azhar ul, H., Malik, A., Khan, A., Shah, M. R. & Muhammad, P. (2004). Arch. Pharm. Res. 27, 1216–1219.
- Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R.(2005). J. Appl. Cryst. 38, 381–388.

Calzada, F., Meckes, M. & Cedillo-Rivera, R. (1999). Planta Med. 65, 78-80.

Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.

Ferheen, S., Ahmed, E., Afza, N., Malik, A., Shah, M. R., Nawaz, S. A. & Choudhary, M. I. (2005). *Chem. Pharm. Bull.* 53, 570–572.

- Hussain, J., Khan, F. U., Rehman, N. U., Ullah, R., Mohmmad, Z., Tasleem, S., Naeem, A. & Shah, M. R. (2009). J. Asian Nat. Prod. Res. 11, 997–1000.
- Hussain, J., Ullah, F., Hussain, H., Hussain, S. T. & Shah, M. R. (2008). Z. Naturforsch. Teil B, 63, 591–594.
- Jan, A. K., Shah, M. R., Anis, I. & Marwat, I. K. (2009). J. Enzyme Inhib. Med. Chem. 24, 192–196.
- Khan, S. B., Azhar ul, H., Afza, N., Malik, A., Khan, M. T. H., Shah, M. R. & Choudhary, M. I. (2005a). Chem. Pharm. Bull. 53, 86–89.
- Khan, S. B., Azhar ul, H., Perveen, S., Afza, N., Malik, A., Nawaz, S. A., Shah, M. R. & Choudhary, M. I. (2005b). Arch. Pharm. Res. 28, 172–176.
- Lin, Y. M., Flavin, M. T., Schure, R., Chen, F. C., Sidwell, R., Barnard, D. L., Huffman, J. H. & Kern, E. R. (1999). *Planta Med.* 65, 120–125.
- Nisar, M., Qayum, M., Shah, M. R., Kaleem, W. A., Ali, I. & Zia-ul-Haq, M. (2010). *Pak. J. Bot.* **42**, 523–526
- Pedrielli, P., Pedulli, G. F. & Skibsted, L. H. (2001). J. Agric. Food Chem. 49, 3034–3040.
- Riaz, N., Anis, I., Khan, P. M., Shah, R. & Malik, A. (2002). Nat. Prod. Lett. 16, 415–418.
- Sharif, A., Ahmed, E., Malik, A., Riaz, N., Afza, N., Nawaz, S. A., Arshad, M., Shah, M. R. & Choudhary, M. I. (2005). Arch. Pharm. Res. 28, 761–764.Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.

Acta Cryst. (2010). E66, o2716-o2717 [doi:10.1107/S1600536810039012]

5,7-Dihydroxy-3,6-dimethoxy-2-(4-methoxyphenyl)-4H-chromen-4-one monohydrate

A. Mohammad, I. Anis, V. McKee, J. W. A. Frese and M. R. Shah

Comment

Our investigation on natural product chemistry (Arfan *et al.*, (2010); Azhar *et al.*, (2004); Ferheen *et al.*, (2005); Hussain *et al.*, (2008, 2009); Jan *et al.*, 2009) is intended to explore the medicinal aspect of indigenous plants (Khan *et al.*, (2005*a*); Khan *et al.*, (2005*b*); Nisar *et al.*, (2010); Riaz *et al.*, (2002); Sharif *et al.*, (2005).) of Pakistan. The plant *Dodonaea Viscosa* has been screened for the presence of biologically active compounds resulting in the isolation of a Flavonoid (Fig.1). The crystal structure and isolation of the title compound are presented below. Flavonoids, comprising a vast family of polyphenolic secondary metabolites, exhibit a wide range of biological activities, such as anti–oxidant (Pedrielli *et al.*, 2001), anti–viral (Lin *et al.*, 1999), anti–protozoal (Calzada, *et al.*, 1999).

The methoxy groups at C4 and C9 of title compound (Fig. 1) are nearly orthogonal to the benzopyranone moiety, as indicated by the torsion angles 97.5 (3)° and 107.6 (3)° respectively. The methoxy group at C15 is nearly coplanar with the phenyl ring with torsion angle (C17–C15–O7–C16) 0.3 (4)°. Rings *A* and *B* (the benzopyrone moiety) are fused at C1 and C7 and almost coplanar, the interplanar angle between the two rings is 1.40 (3)°. Ring *C* (the phenyl moeity) is attached to benzopyranone system at C11 with an interplanar angle of 5.83 (2)° between the two ring systems.

A combination of intermolecular and intramolecular hydrogen bonding, forming $R^4_{6}(12)$ and $R^4_{4}(16)$ patterns (Etter *et al.*, 1990), links the molecules into stepped ribbons perpendicular to *b* axis (Fig. 2 and Table 1). The ribbons are stacked parallel to the *b* axis by π - π interactions (Fig. 3); the average interplanar distance is 3.378 (3)Å (under symmetry operation 3/2-x, -1/2+y, 3/2-z) and the distance from the centroid of the phenyl group to the centre of the C1–C7 bond is 3.476 (3)Å.

Experimental

The whole plant of *Dodonaea viscosa* (50 kg) was powdered and extracted with methanol (100 L \times 3) at room temperature and the residue (1 kg) was separated under vacuum. The residue was suspended in water and extracted with *n*-hexane, chloroform, ethyl acetate and *n*-butanol respectively. The ethyl acetate fraction (250 g) was subjected repeatedly to column chromatography on silica gel using petroleum ether with a gradient of 25% chloroform to yield the title compound (50 mg). Single crystals suitable for X-ray diffraction analysis were obtained from an ether-chloroform mixture (1:2) by slow evaporation of the solvent at room temperature.

Refinement

H atoms bonded to carbon and the phenol oxygen atoms were placed in geometric positions using a riding model, C—H distances were constrained as 0.95Å, 0.98Å and 0.84Å, for aryl, methyl and phenol groups respectively. Hydrogen atoms on the water molecule were located from difference maps and their coordinates refined under restraints. Thermal parameters were set to $U_{iso}(H) = 1.5U_{eq}(C, O)$ for methyl groups and the water molecule and $U_{iso}(H) = 1.2U_{eq}(C)$ for all others.

Figures

Fig. 1. Molecular structure of title compound with atom numbering scheme. Displacement ellipsoids are drawn at 50% probability level. H atoms are presented as a small spheres of arbitrary radius. Several H bonds are drawn by dashed lines.

Fig. 2. Packing diagram showing the H-bond network (dashed lines).

Fig. 3. The π - π interactions. Red cirles mark centroids of bonds or rings.

5,7-Dihydroxy-3,6-dimethoxy-2-(4-methoxyphenyl)-4H-chromen-4-one monohydrate

Crystal data	
$C_{18}H_{16}O_7 \cdot H_2O$	F(000) = 1520
$M_r = 362.32$	$D_{\rm x} = 1.456 {\rm ~Mg~m}^{-3}$
Monoclinic, C2/c	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -C 2yc	Cell parameters from 1391 reflections
a = 19.869 (4) Å	$\theta = 2.6 - 22.0^{\circ}$
<i>b</i> = 6.8126 (15) Å	$\mu = 0.12 \text{ mm}^{-1}$
c = 24.424 (5) Å	T = 150 K
$\beta = 91.298 \ (4)^{\circ}$	Block, yellow
$V = 3305.2 (12) \text{ Å}^3$	$0.19 \times 0.18 \times 0.09 \text{ mm}$
Z = 8	

Data collection

3400 independent reflections
2072 reflections with $I > 2\sigma(I)$
$R_{\text{int}} = 0.068$
$\theta_{\text{max}} = 26.4^{\circ}, \ \theta_{\text{min}} = 1.7^{\circ}$
$h = -24 \rightarrow 24$
$k = -8 \rightarrow 8$
$l = -30 \rightarrow 30$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.050$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.142$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.05	$w = 1/[\sigma^2(F_0^2) + (0.0597P)^2 + 1.2286P]$ where $P = (F_0^2 + 2F_c^2)/3$
3400 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
243 parameters	$\Delta \rho_{max} = 0.28 \text{ e} \text{ Å}^{-3}$
3 restraints	$\Delta \rho_{\rm min} = -0.28 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

|--|

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.69131 (8)	0.1125 (2)	0.73867 (6)	0.0233 (4)
C1	0.65171 (12)	0.1096 (4)	0.69190 (10)	0.0229 (6)
C2	0.58358 (12)	0.0898 (4)	0.69845 (10)	0.0258 (6)
H2	0.5651	0.0824	0.7339	0.031*
C3	0.54256 (13)	0.0807 (4)	0.65176 (10)	0.0263 (6)
O2	0.47576 (9)	0.0548 (3)	0.65803 (8)	0.0367 (5)
H2A	0.4573	0.0329	0.6274	0.063 (11)*
C4	0.56984 (13)	0.0955 (4)	0.59938 (10)	0.0268 (6)
O3	0.52807 (9)	0.0810(2)	0.55366 (7)	0.0313 (5)
C5	0.50843 (15)	0.2684 (4)	0.53157 (11)	0.0381 (7)
H5A	0.4789	0.2488	0.4993	0.057*
H5B	0.5486	0.3413	0.5210	0.057*
H5C	0.4844	0.3429	0.5593	0.057*
C6	0.63836 (13)	0.1158 (4)	0.59382 (10)	0.0248 (6)
O4	0.66442 (10)	0.1283 (3)	0.54307 (7)	0.0326 (5)
H4A	0.7066	0.1279	0.5456	0.079 (13)*
C7	0.68135 (12)	0.1217 (4)	0.64058 (9)	0.0223 (5)

C8	0.75264 (12)	0.1433 (4)	0.63673 (10)	0.0236 (6)
O5	0.78120 (9)	0.1632 (3)	0.59130 (7)	0.0314 (5)
C9	0.79061 (12)	0.1419 (4)	0.68777 (10)	0.0230 (6)
O6	0.85888 (8)	0.1730 (3)	0.68523 (7)	0.0308 (5)
C10	0.89618 (14)	0.0038 (5)	0.66731 (12)	0.0463 (8)
H10A	0.9442	0.0360	0.6666	0.069*
H10B	0.8805	-0.0341	0.6305	0.069*
H10C	0.8892	-0.1054	0.6927	0.069*
C11	0.75982 (12)	0.1256 (4)	0.73687 (10)	0.0227 (6)
C12	0.79011 (12)	0.1236 (3)	0.79246 (10)	0.0216 (5)
C13	0.85991 (12)	0.1219 (4)	0.80250 (10)	0.0264 (6)
H13	0.8895	0.1229	0.7725	0.032*
C14	0.88602 (13)	0.1188 (4)	0.85496 (10)	0.0253 (6)
H14	0.9334	0.1153	0.8609	0.030*
C15	0.84399 (12)	0.1208 (4)	0.89942 (10)	0.0225 (5)
O7	0.87539 (8)	0.1210 (3)	0.94962 (7)	0.0300 (4)
C16	0.83423 (14)	0.1220 (5)	0.99661 (10)	0.0407 (7)
H16A	0.8629	0.1224	1.0298	0.061*
H16B	0.8057	0.0047	0.9963	0.061*
H16C	0.8058	0.2396	0.9960	0.061*
C17	0.77463 (12)	0.1225 (4)	0.89071 (10)	0.0252 (6)
H17	0.7453	0.1239	0.9209	0.030*
C18	0.74882 (12)	0.1220 (4)	0.83780 (10)	0.0232 (6)
H18	0.7014	0.1206	0.8321	0.028*
O1W	0.88745 (11)	0.4465 (4)	0.57732 (8)	0.0492 (6)
H1A	0.8602 (15)	0.357 (4)	0.5866 (12)	0.074*
H1B	0.8908 (17)	0.435 (5)	0.5425 (7)	0.074*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0190 (9)	0.0306 (10)	0.0200 (9)	-0.0011 (7)	-0.0033 (7)	-0.0012 (8)
C1	0.0253 (13)	0.0201 (13)	0.0230 (13)	0.0015 (10)	-0.0049 (11)	-0.0001 (11)
C2	0.0245 (14)	0.0287 (15)	0.0243 (13)	0.0006 (11)	0.0005 (11)	-0.0022 (11)
C3	0.0240 (14)	0.0253 (15)	0.0294 (14)	-0.0005 (11)	-0.0028 (11)	-0.0007 (11)
O2	0.0221 (10)	0.0538 (14)	0.0340 (11)	-0.0035 (9)	-0.0051 (8)	-0.0030 (9)
C4	0.0340 (15)	0.0214 (14)	0.0246 (14)	0.0005 (11)	-0.0076 (11)	-0.0029 (11)
O3	0.0352 (11)	0.0284 (10)	0.0297 (10)	-0.0006 (8)	-0.0143 (8)	-0.0011 (8)
C5	0.0397 (17)	0.0334 (17)	0.0405 (17)	0.0053 (13)	-0.0154 (13)	0.0020 (13)
C6	0.0314 (15)	0.0206 (13)	0.0223 (13)	0.0029 (11)	-0.0003 (11)	-0.0013 (11)
O4	0.0339 (12)	0.0423 (12)	0.0217 (10)	0.0024 (9)	-0.0011 (8)	-0.0005 (8)
C7	0.0260 (13)	0.0190 (13)	0.0219 (13)	0.0025 (11)	-0.0018 (10)	-0.0010 (10)
C8	0.0277 (14)	0.0206 (13)	0.0226 (13)	0.0014 (11)	0.0029 (11)	-0.0005 (10)
O5	0.0288 (10)	0.0439 (12)	0.0217 (10)	0.0000 (9)	0.0026 (8)	0.0000 (8)
C9	0.0191 (13)	0.0246 (14)	0.0253 (13)	-0.0010 (10)	0.0012 (10)	-0.0005 (11)
O6	0.0211 (9)	0.0428 (12)	0.0285 (10)	-0.0036 (8)	0.0024 (8)	0.0014 (8)
C10	0.0263 (16)	0.072 (2)	0.0404 (17)	0.0160 (15)	0.0009 (13)	-0.0118 (16)
C11	0.0189 (13)	0.0216 (13)	0.0276 (14)	0.0014 (10)	-0.0004 (11)	-0.0009 (11)

C12	0.0229 (13)	0.0181 (13)	0.0238 (13)	-0.0001 (10)	-0.0028 (10)	-0.0014 (10)
C13	0.0236 (13)	0.0291 (14)	0.0267 (14)	-0.0003 (11)	0.0013 (11)	-0.0012 (12)
C14	0.0216 (13)	0.0264 (14)	0.0278 (14)	0.0005 (11)	-0.0027 (11)	0.0016 (11)
C15	0.0245 (13)	0.0189 (13)	0.0239 (13)	-0.0004 (10)	-0.0027 (11)	-0.0003 (10)
07	0.0262 (10)	0.0426 (11)	0.0211 (9)	0.0009 (8)	-0.0041 (7)	0.0002 (8)
C16	0.0323 (16)	0.068 (2)	0.0211 (14)	-0.0006 (15)	-0.0012 (12)	0.0013 (14)
C17	0.0249 (14)	0.0281 (14)	0.0228 (13)	0.0010 (11)	0.0016 (11)	-0.0008 (11)
C18	0.0207 (13)	0.0242 (13)	0.0246 (13)	-0.0001 (11)	-0.0005 (10)	-0.0011 (11)
O1W	0.0424 (13)	0.0714 (17)	0.0334 (12)	-0.0225 (11)	-0.0046 (10)	0.0037 (11)
Geometric part	ameters (Å, °)					
01—C11		1 366 (3)	06—	C10	1 44	4 (3)
01-C1		1 372 (3)	C10-	-H10A	0.98	00
C1—C2		1.373 (3)	C10-	-H10B	0.98	00
C1—C7		1.399 (3)	C10-	-H10C	0.98	00
C2—C3		1.388 (3)	C11–	-C12	1.47	3 (3)
C2—H2		0.9500	C12-	-C18	1.39	3 (3)
C3—O2		1.351 (3)	C12-	C13	1.40	3 (3)
C3—C4		1.404 (4)	C13–	C14	1.37	2 (3)
O2—H2A		0.8400	C13–	-H13	0.95	00
C4—C6		1.378 (4)	C14-	C15	1.38	5 (3)
C4—O3		1.380 (3)	C14–	-H14	0.95	00
O3—C5		1.436 (3)	C15–	07	1.36	3 (3)
С5—Н5А		0.9800	C15–	C17	1.39	0 (3)
С5—Н5В		0.9800	07—	C16	1.42	4 (3)
С5—Н5С		0.9800	C16–	-H16A	0.98	00
C6—O4		1.357 (3)	C16-	-H16B	0.98	00
С6—С7		1.411 (3)	C16–	-H16C	0.98	00
O4—H4A		0.8400	C17–	C18	1.37	9 (3)
С7—С8		1.429 (3)	C17–	–H17	0.95	00
C8—O5		1.265 (3)	C18–	-H18	0.95	00
С8—С9		1.442 (3)	O1W	—H1A	0.85	2 (17)
C9—C11		1.363 (3)	O1W	—H1B	0.85	9 (17)
С9—Об		1.376 (3)				
C11—O1—C1		121.81 (19)	O6—	C10—H10A	109.	5
O1—C1—C2		116.9 (2)	O6—	C10—H10B	109.	5
O1—C1—C7		120.0 (2)	H10A	с10—Н10В	109.	5
C2—C1—C7		123.1 (2)	O6—	C10—H10C	109.	5
C1—C2—C3		118.1 (2)	H10A	—С10—Н10С	109.	5
C1—C2—H2		121.0	H10E	В—С10—Н10С	109.	5
С3—С2—Н2		121.0	С9—	C11—O1	120.	1 (2)
O2—C3—C2		118.2 (2)	С9—	C11—C12	129.	0 (2)
O2—C3—C4		120.9 (2)	01—	C11—C12	110.	9 (2)
C2—C3—C4		120.9 (2)	C18–	C12C13	117.	3 (2)
C3—O2—H2A		109.5	C18–	C12C11	119.	8 (2)
C6—C4—O3		120.3 (2)	C13–	C12C11	122.	9 (2)
C6—C4—C3		120.0 (2)	C14-	C13C12	121.	0 (2)
O3—C4—C3		119.7 (2)	C14-	C13H13	119.	5

C4—O3—C5	113.20 (19)	С12—С13—Н13	119.5
O3—C5—H5A	109.5	C13—C14—C15	120.7 (2)
O3—C5—H5B	109.5	C13-C14-H14	119.7
H5A—C5—H5B	109.5	C15-C14-H14	119.7
O3—C5—H5C	109.5	O7—C15—C14	115.7 (2)
H5A—C5—H5C	109.5	O7—C15—C17	124.7 (2)
H5B—C5—H5C	109.5	C14—C15—C17	119.6 (2)
O4—C6—C4	119.6 (2)	C15—O7—C16	117.7 (2)
O4—C6—C7	120.1 (2)	O7—C16—H16A	109.5
C4—C6—C7	120.3 (2)	O7—C16—H16B	109.5
С6—О4—Н4А	109.5	H16A—C16—H16B	109.5
C1—C7—C6	117.6 (2)	O7—C16—H16C	109.5
C1—C7—C8	120.2 (2)	H16A—C16—H16C	109.5
C6—C7—C8	122.2 (2)	H16B—C16—H16C	109.5
O5—C8—C7	122.3 (2)	C18—C17—C15	119.3 (2)
O5—C8—C9	121.5 (2)	С18—С17—Н17	120.3
С7—С8—С9	116.2 (2)	С15—С17—Н17	120.3
C11—C9—O6	121.0 (2)	C17—C18—C12	122.1 (2)
С11—С9—С8	121.6 (2)	C17—C18—H18	118.9
O6—C9—C8	117.2 (2)	C12—C18—H18	118.9
C9—O6—C10	113.8 (2)	H1A—O1W—H1B	105 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A		
O2—H2A···O1W ⁱ	0.84	1.92	2.712 (3)	157		
O2—H2A…O3	0.84	2.33	2.780 (3)	114		
O4—H4A…O5	0.84	1.85	2.589 (3)	146		
O1W—H1A···O5	0.85 (2)	2.05 (2)	2.886 (3)	165 (3)		
O1W—H1A···O6	0.85 (2)	2.71 (3)	3.288 (3)	126 (3)		
O1W—H1B···O4 ⁱⁱ	0.86 (2)	2.38 (2)	3.135 (3)	148 (3)		
Symmetry codes: (i) $x-1/2$, $y-1/2$, z ; (ii) $-x+3/2$, $-y+1/2$, $-z+1$.						

Fig. 3